Online Toolbox

RSA Verschlüsselung Entschlüsselung

Öffentlicher und privater Schlüssel (der Schlüssel kann direkt ausgefüllt werden)
2. Verschlüsselung / Entschlüsselung

Was ist die RSA-Verschlüsselung?

RSA wurde 1977 von Ron Rivest, Adi Shamir und Leonard Adleman entwickelt. Alle drei arbeiteten am MIT. RSA besteht aus den Anfangsbuchstaben ihrer Nachnamen. Der RSA-Algorithmus ist ein asymmetrischer Verschlüsselungsalgorithmus, der im Gegensatz zu einem symmetrischen Verschlüsselungsalgorithmus zwei verschiedene Schlüssel hat, einen öffentlichen und einen privaten Schlüssel. RSA Public-Key - Kryptosysteme sind Kryptosysteme, die unterschiedliche Verschlüsselungsschlüssel und Entschlüsselungsschlüssel verwenden, so dass „die Ableitung eines Entschlüsselungsschlüssels aus bekannten Verschlüsselungsschlüsseln rechnerisch nicht möglich ist". In einem Public-Key - Kryptosystem ist der Verschlüsselungsschlüssel (d.h. der öffentliche Schlüssel) PK öffentlich, während der Entschlüsselungsschlüssel (d.h. der geheime Schlüssel) SK geheim gehalten werden muss. Der Verschlüsselungsalgorithmus E und der Entschlüsselungsalgorithmus D sind ebenfalls öffentlich. Obwohl der Entschlüsselungsschlüssel SK durch den öffentlichen Schlüssel PK bestimmt wird, kann der SK nicht anhand des PK berechnet werden. Auf der Grundlage dieser Theorie entstand 1978 der berühmte RSA-Algorithmus, der in der Regel zuerst ein Paar RSA-Schlüssel erzeugt, von denen einer der geheimen Schlüssel ist, der vom Benutzer gespeichert wird, und der andere ist ein öffentlicher Schlüssel, der öffentlich zugänglich gemacht werden kann oder sogar auf einem Netzwerkserver registriert werden kann. Um die Geheimhaltung zu erhöhen, ist der RSA-Schlüssel mindestens 500 Bit lang. Dies macht die Verschlüsselung zu einem großen Rechenvolumen. Um den Rechenaufwand zu reduzieren, wird bei der Übertragung von Informationen häufig eine Kombination von traditionellen Verschlüsselungsmethoden und Verschlüsselungsmethoden mit öffentlichem Schlüssel verwendet, dh die Informationen werden mit einem verbesserten DES - oder IDEA-Dialogschlüssel verschlüsselt und dann mit einem RSA-Schlüssel verschlüsselt. Nachdem die andere Seite die Nachricht empfangen hat, entschlüsselt sie mit einem anderen Schlüssel und kann die Zusammenfassung der Nachricht überprüfen. RSA ist der am weitesten erforschte öffentliche Schlüssel-Algorithmus, der nach der Vorlage von verschiedenen Angriffen durchlief und allmählich von den Menschen akzeptiert wurde, allgemein als eines der besten öffentlichen Schlüssel-Programme angesehen wird. 1983 meldete das Massachusetts Institute of Technology (MIT) in den USA ein Patent für den RSA-Algorithmus an. RSA erlaubt die Auswahl der Größe des öffentlichen Schlüssels. 512 - Bit-Schlüssel gelten als unsicher; 768 - Bit-Schlüssel können nicht von anderen als der National Security Administration (NSA) gefährdet werden; RSA ist in wichtige Produkte wie Windows, Netscape Navigator, Quicken und Lotus Notes eingebettet. Da der RSA-Algorithmus 1024 - Bit-Schlüssel einer ernsthaften Sicherheitsbedrohung ausgesetzt ist, um die sichere Anwendung von elektronischen Authentifizierungsdiensten zu gewährleisten, veröffentlichte die Shanghai Municipal Cryptographic Administration am 5. Dezember 2016 eine Ankündigung auf ihrer offiziellen Website, dass sie ab dem 1. Januar 2017 die Bereitstellung von RSA-Algorithmus 1024 - Bit-Schlüsselpaaren anbietet und mit den elektronischen Authentifizierungsdiensten und Anwendungseinheiten zusammenarbeitet, um Maßnahmen zu ergreifen, um einen reibungslosen Übergang sicherzustellen.

Sicherheit der RSA-Verschlüsselung

Die Sicherheit von RSA hängt von der Auflösung großer Zahlen ab, aber ob sie mit der Auflösung großer Zahlen gleichwertig ist, konnte nicht theoretisch nachgewiesen werden, und die Entschlüsselung konnte nicht theoretisch nachgewiesen werden. Die Schwierigkeit von RSA ist gleichwertig mit der Schwierigkeit der Decomposition großer Zahlen. Da es keinen Beweis dafür gibt, dass RSA zwingend zerlegt werden muss, ist es notwendig, eine große Anzahl zu zerlegen. Angenommen, es gibt einen Algorithmus, der keine große Zahl zerlegen muss, dann kann er sicherlich in einen Algorithmus für die Zerlegung großer Zahlen modifiziert werden, dh der große Fehler von RSA ist, dass er nicht in der Lage ist, seine Geheimhaltung theoretisch zu verstehen, und die Mehrheit der Kryptographie neigt dazu, dass die Faktorisierung kein NPC-Problem ist. Gegenwärtig haben sich einige Varianten von RSA-Algorithmen als gleichwertig mit der Decomposition großer Zahlen erwiesen. Auf jeden Fall ist die Zerstörung der offensichtlichste Angriffsmethode. Mittlerweile ist es möglich, große Primzahlen mit mehr als 140 Dezimalstellen zu zerlegen. Daher muss das Modul n größer gewählt werden, je nach spezifischer Anwendung. Die Geheimhaltungsstärke des RSA-Algorithmus steigt mit zunehmender Schlüssellänge. Je länger der Schlüssel jedoch ist, desto länger dauert seine Verschlüsselung und Entschlüsselung. Daher ist es notwendig, die Sensibilität der geschützten Informationen und die Kosten, die der Angreifer für den Hacken und die Reaktionszeit des Systems benötigt, zu berücksichtigen, insbesondere im Bereich der kommerziellen Informationen.